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ABSTRACT

. An ideal quantum receiver is to detect a
coherent narrowband optical signal in the presence
of thermal background radiation. Curves are given
both of the average probability of error in a binary
communication system transmitting 0's (blanks)
and I's (pulses) with equal probabilities, and of the
probability of detection for various fixed values of

the false-alarm probability.



In analyzing a proposed optical communication or radar
receiver it is useful to compare its performance with that of an ideal
receiver limited only by background radiation and by the quantum nature
of the signals to be detected. In this correspondence, we present per-
formance curves for a receiver of coherent optical signals of random
phase in the presence of thermal background radiation of absolute tempera-
ture T. The time of arrival and the form of the envelope of each signal
are assumed known,

The signal is postulated to be a coherent narrowband pulse such
as would be emitted by an ideal laser. The ideal receiver consists of a
cavity with an aperture directed toward the source of the signal. The
_cavity is initialiy empty. During the period when the signal is expected
to arrive, the aperture is opened to admit it and then closed. An observer
makes the best possible measurements on the field in the cavity for the
purpose of deciding whether it contains a component due to a signal or not.
It has been shown that the optimum procedure for detecting a signal of this
kind is equivalent to counting the number m o;é photons -~ or measuring the
energy -- in a composite mode that is in effect matched to the signal.
If m exceeds a certain decision level i, the observer decides that a
signal is present. The resulting performance is the same as though the

signal occupied a single mode of the receiver.



Let S be the average number of photons in the signal; S = ES/h\) ,
where ES is the energy in the signal, h is Planck's constant, and v is the
carrier frequency of the signal. Let N be the average number of noise
photons per mode of the receiver. For thermal radiation of absolute

temperature T,

N = [exp (hv/kT) - 1]"1, (1)

where k is Boltzmann's constant.
In the absence of a signal (hypothesis HO) the probability that m

photons are counted is

—_— m s
POm—(l—v)v , v=N/(N+1). {2)

When the signal is present (hypothesis Hl), the probability that m photons

2
are counted is given by the Laguerre distribution

P =(l-v)e (VIS m

2
' Lm[- (1 - v) S/v] (3)

where Lm(x) is the m-th Laguerre polynomial.

We anaiyze first a binary communication system sending messages
coded into0O's and 1's. A 1 is transmitted by dispatching a laser pulse, a
0 by dispatching nothing. We suppose 0's and I's to be equally probable,

The optimum receiver compares the likelihood ratio PIIn/POm with the



decision level 1, deciding that a 1 was sent (choosing Hl) whenever

P]:m/POm > 1. The decision level p is therefore the smallest integer for

which
2 -
L L-(-v)7s/iv]= VIS,
The probability of an error of the first kind (choosing hypothesis
Hl when I—IO is true) is
_ v o p+l
Q, 2 Po=vi T (4)

The probability of an error of the second kind (choosing HO when H1 is

true) is
m
Q, = 2 P (5)

The average probability of error is

d
I

@, +Q). (6)

o
™|+

It is plotted in Fig. 1 versus the average number S of signal photons, and
in Fig. 2 versus the signal-to-noise ratio S/N, for various values of N.
In Table 1we give the values of the ratio hv/kT corresponding to the

average numbers N of noise photons used in the graphs.



TABLE 1

N 0.01 0.03 0.05 0.1 0.2 0.3 0.4
hv/kT 4,61 3.54 3.04 2,40 1. 792 1.466 1.253

N 0.5 1 2 3 5 7 9

hv/kT 1099 0.693 0.406 0.288 0.1823 0.1334 0.1054

When N is large, the error probabilities are nearly the same as
for detecting a classical narrowband signal of random phase in white

Gaussian noise,

Q, = exp (-8°/2), (7)
B 2 2
Q=1 -Q(a,5)=f xexpl-} (x"+a")]1 (@x)dx,  (8)
0
where
B%/2 = u/N, o°/2 =S/N , (9)

and Q (@, B) is Marcum's Q-function. For this binary communication
- system the value of B is the solution of the equation

2
-o /2 I, @B =1, (10)

and the average probability of error is

Pe=%Q(B,01). (11)



It has been plotted as the curve marked "N = » ! in Fig, 2,

In a laser radar the recejver will be based on the Neyman-Pearson
criterion and will maximize the detection probability Qd =1 - Ql for a
fixed false-alarm probability QO. In order to attain exactly a pre-
assigned value of QO, the decisions must be randomized.

For all numbers m of photons less than a certain number W, hypothesis
HO is chosen; for all m > u, H1 is chosen. Whenever exactly & photons
are counted, hypothesis H1 is chosen with probability f, HO with probability

(1 -f).

The false-alérm probability is now

Q, =f(1-v) v + ML
(12)

v =N/(N+1), 0< f<1,
from which i and f can be calculated for given values of QO and N; 4 is the
greatest integer in the quotient (4n QO/%n v). The probability of detection

is now

"
Q=1- z Pl IR (13)
m=0

It has been plotted in Figs. 3-5 versus the average number S of signal

photons and in Figs. 6-8 versus the signal-to-noise ratio S/N, for various

0-2

values of N and for QO =1 , 10—%, and 10-6. The curves marked "N ="



in Figs. 6-8 represent the detection probability for a classical receiver

of a narrowband signal of unknown phase,

1/2
0 =0l 8), @=@smY?, (14)
where B is determined by the false-alarm probability,
2
QO = exp (-B /2). (15)

In a previous paper 5 the probability of detection was ‘erroneously
stated to be given és- in (14) for all values of N, but with o =[ 25/(N +%) ]%
The detection statistic was regarded there as the modulus of a complex
quantity, the mode amplitude, whose real and imaginary parts are
independent Gaussian random variables. Those parts represent non-
commuting observables, howeve;', and their joint probability density
function, from which the distribution of the modulus was derived, cannot
legitimately be specified. The squared modulus is in fact proportional
to the quantized variable m, whose probability distributions are given by

(2) and (3) under the two hypotheses.



FOOTNOTES
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FIGURE CAPTIONS

FIG. 1. Average probability Pe of error versus average number S of
signal photons.
FIG, 2: Average probability Pe of error versus signal-to-noise ratio S/N.

FIG, 3: Probability Qd of detection versus average number S of signal

photons; QO = 10-2.

F1G, 4: Probability Qd of detection versus average number S of signal

photons; QO = 10-4.

FIG. 5: Probability Qd of detection versus average number S of signal
-6
photons; 'QO =10 .
FIG. 6: Probability Qd of detection versus signal-to-noise ratio S/N;
-2

'QO =10

FIG. 7: Probability Qd of detection versus signal-to-noise ratio S/N;

-4
QO =10 .

FIG. 8: Probability Qd of detection versus signal-to-noise ratio S/N;
Q. =10"°.
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Figure 2
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